Local Well-posedness for the Periodic Korteweg-de Vries Equation in Analytic Gevrey Classes

نویسندگان

  • Qifan Li
  • Igor Kukavica
  • QIFAN LI
چکیده

Motivated by the work of Grujić and Kalisch, [Z. Grujić and H. Kalisch, Local well-posedness of the generalized Korteweg-de Vries equation in spaces of analytic functions, Differential and Integral Equations 15 (2002) 1325–1334], we prove the local well-posedness for the periodic KdV equation in spaces of periodic functions analytic on a strip around the real axis without shrinking the width of the strip in time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forced oscillations of a damped‎ ‎Korteweg-de Vries equation on a periodic domain

‎In this paper‎, ‎we investigate a damped Korteweg-de‎ ‎Vries equation with forcing on a periodic domain‎ ‎$mathbb{T}=mathbb{R}/(2pimathbb{Z})$‎. ‎We can obtain that if the‎ ‎forcing is periodic with small amplitude‎, ‎then the solution becomes‎ ‎eventually time-periodic.

متن کامل

A Novel Approach for Korteweg-de Vries Equation of Fractional Order

In this study, the localfractional variational iterationmethod (LFVIM) and the localfractional series expansion method (LFSEM) are utilized to obtain approximate solutions for Korteweg-de Vries equation (KdVE) within local fractionalderivative operators (LFDOs). The efficiency of the considered methods is illustrated by some examples. The results reveal that the suggested algorithms are very ef...

متن کامل

Ill-posedness for Periodic Nonlinear Dispersive Equations

In this article, we establish new results about the ill-posedness of the Cauchy problem for the modified Korteweg-de Vries and the defocusing modified Korteweg-de Vries equations, in the periodic case. The lack of local well-posedness is in the sense that the dependence of solutions upon initial data fails to be continuous. We also develop a method for obtaining ill-posedness results in the per...

متن کامل

The Initial-boundary Value Problem for the Korteweg-de Vries Equation

We prove local well-posedness of the initial-boundary value problem for the Korteweg-de Vries equation on right half-line, left half-line, and line segment, in the low regularity setting. This is accomplished by introducing an analytic family of boundary forcing operators.

متن کامل

ar X iv : 0 90 4 . 28 19 v 1 [ m at h . A P ] 1 8 A pr 2 00 9 PERIODIC STOCHASTIC KORTEWEG - DE VRIES EQUATION

We prove the local well-posedness of the periodic stochastic Korteweg-de Vries equation with the additive space-time white noise. In order to treat low regularity of the white noise in space, we consider the Cauchy problem in the Besov-type space bbp,∞(T) for s = − 1 2 +, p = 2+ such that sp < −1. In establishing the local well-posedness, we use a variant of the Bourgain space with a weight fol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011